The Spectral Theorem

June 25, 2025

Chapter 1 Introduction

The principal assertion of the spectral theorem is that every bounded normal operator T on a Hilbert space induces (in a canonical way) a resolution E of the identity on the Borel subsets of its spectrum $\sigma(T)$ and that T can be reconstructed from E by an integral. A large part of the theory of normal operators depends on this fact.

The Reisz Theorem

- Destination: MeasureTheory/Integral/RieszMarkovKakutam/ComplexRMK
- Principal reference: Theorem 6.19 of [Walter Rudin, Real and Complex Analysis.][Rud87].

The main statement is:

If X is a locally compact Hausdorff space, then every bounded linear functional Φ on $C_0(X)$ is represented by a unique regular complex Borel measure μ , in the sense that

$$\Phi f = \int_X f \, d\mu$$

for every $f \in C_0(X)$. Moreover, the norm of Φ is the total variation of μ :

$$\|\Phi\| = |\mu|(X).$$

Definition 1 (Variation of a Vector-Valued Measure). Let (X, \mathcal{A}) be a measurable space and let Y be a Banach space. For a vector-valued measure $\mu : \mathcal{A} \to Y$, the **variation** of μ is the set function $|\mu| : \mathcal{A} \to [0, +\infty]$ defined by

$$|\mu|(E) = \sup\left\{\sum_{i=1}^n \|\mu(E_i)\|_Y : \{E_1, E_2, \dots, E_n\} \text{ is a finite partition of } E \text{ in } \mathcal{A}\right\}$$

for each $E \in \mathcal{A}$.

Equivalently, the above definition can be written as:

$$|\mu|(E) = \sup\left\{\sum_{i=1}^n \|\mu(E_i)\|_Y : E_i \in \mathcal{A}, \, E_i \cap E_j = \emptyset \text{ for } i \neq j, \, \bigcup_{i=1}^n E_i \subseteq E\right\}$$

Theorem 2 (Rudin 6.12 (polar representation of a complex measure)). Let μ be a complex measure on a σ -algebra \mathfrak{M} in X. Then there is a measurable function h such that |h(x)| = 1 for all $x \in X$ and such that

$$d\mu = h \, d|\mu|. \tag{2.1}$$

Proof. This rather depends on how the integral with respect to a complex measure is defined. See [Rudin, Theorem 6.12] for details. \Box

Definition 3. Let X be a locally compact Hausdorff space. Associated to every bounded linear functional Φ on $C_0(X)$ we define a regular complex Borel measure μ which we call the Riesz Measure associated to Φ .

TO DO: insert details from the proof of the exact definition.

In order to prove the main result we divide the result into several smaller results.

Theorem 4 (Rudin 3.14). For $1 \le p < \infty$, $C_c(X)$ is dense in $L^p(\mu)$.

Proof. Define S as in Theorem 3.13. If $s \in S$ and $\varepsilon > 0$, there exists a $g \in C_c(X)$ such that g(x) = s(x) except on a set of measure $< \varepsilon$, and $|g| \le ||s||_{\infty}$ (Lusin's theorem). Hence

$$\|g - s\|_p \le 2\varepsilon^{1/p} \|s\|_{\infty}.$$
 (2.2)

Since S is dense in $L^{p}(\mu)$, this completes the proof.

Theorem 5 (Rudin 6.13). Suppose μ is a positive measure on $\mathfrak{M}, g \in L^1(\mu)$, and

$$\lambda(E) = \int_{E} g \, d\mu \quad (E \in \mathfrak{M}). \tag{2.3}$$

Then

$$|\lambda|(E) = \int_{E} |g| \, d\mu \quad (E \in \mathfrak{M}).$$
(2.4)

Proof. By Theorem 2, there is a function h, of absolute value 1, such that $d\lambda = h d|\lambda|$. By hypothesis, $d\lambda = g d\mu$. Hence

$$h\,d|\lambda| = g\,d\mu.$$

This gives $d|\lambda| = \bar{h}g \, d\mu$. (Compare with Theorem 1.29.) Since $|\lambda| \ge 0$ and $\mu \ge 0$, it follows that $\bar{h}g \ge 0$ a.e. $[\mu]$, so that $\bar{h}g = |g|$ a.e. $[\mu]$.

Theorem 6 (Rudin 6.16). Suppose $1 \le p < \infty$, μ is a σ -finite positive measure on X, and Φ is a bounded linear functional on $L^p(\mu)$. Then there is a unique $g \in L^q(\mu)$, where q is the exponent conjugate to p, such that

$$\Phi(f) = \int_X fg \, d\mu \quad (f \in L^p(\mu)). \tag{2.5}$$

Moreover, if Φ and g are related as in (1), we have

$$\|\Phi\| = \|g\|_q. \tag{2.6}$$

In other words, $L^{q}(\mu)$ is isometrically isomorphic to the dual space of $L^{p}(\mu)$, under the stated conditions.

Proof. Rudin 6.16: Duality of L^1 and L^∞ (not in Mathlib https://leanprover.zulipchat. com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/Lp.20duality/near/495207025)

Lemma 7. Let X be a locally compact Hausdorff space, and let Φ be a bounded linear functional on $C_0(X)$. Suppose that μ , ν are regular complex Borel measure such that

$$\Phi f = \int_X f \, d\mu = \int_X f \, d\nu.$$

Then $\mu = \nu$.

Proof. Suppose μ is a regular complex Borel measure on X and $\int f d\mu = 0$ for all $f \in C_0(X)$. By Theorem 2 there is a Borel function h, with |h| = 1, such that $d\mu = h d|\mu|$. For any sequence $\{f_n\}$ in $C_0(X)$ we then have

$$|\mu|(X) = \int_{X} (\bar{h} - f_n) h \, d|\mu| \le \int_{X} |\bar{h} - f_n| \, d|\mu|, \tag{3}$$

and since $C_c(X)$ is dense in $L^1(|\mu|)$ (Theorem 4), $\{f_n\}$ can be so chosen that the last expression in (3) tends to 0 as $n \to \infty$. Thus $|\mu|(X) = 0$, and $\mu = 0$. It is easy to see that the difference of two regular complex Borel measures on X is regular. This shows that at most one μ corresponds to each Φ .

Lemma 8. Consider a given bounded linear functional Φ on $C_0(X)$. Assume $\|\Phi\| = 1$. (Update statement to be the general case.) We shall construct a positive linear functional Λ on $C_c(X)$, such that

$$|\Phi(f)| \le \Lambda(|f|) \le ||f|| \quad (f \in C_c(X)), \tag{4}$$

where ||f|| denotes the supremum norm.

Proof. Assume $\|\Phi\| = 1$, without loss of generality.

So all depends on finding a positive linear functional Λ that satisfies (4). If $f \in C_c^+(X)$ [the class of all nonnegative real members of $C_c(X)$], define

$$\Lambda f = \sup\{|\Phi(h)| : h \in C_c(X), |h| \le f\}.$$
(9)

Then $\Lambda f \ge 0$, Λ satisfies (4), $0 \le f_1 \le f_2$ implies $\Lambda f_1 \le \Lambda f_2$, and $\Lambda(cf) = c\Lambda f$ if c is a positive constant. We have to show that

$$\Lambda(f+g) = \Lambda f + \Lambda g \quad (f \text{ and } g \in C_c^+(X)), \tag{10}$$

and we then have to extend Λ to a linear functional on $C_c(X)$.

Fix f and $g \in C_c^+(X)$. If $\varepsilon > 0$, there exist h_1 and $h_2 \in C_c(X)$ such that $|h_1| \le f$, $|h_2| \le g$, and

$$\Lambda f \leq |\Phi(h_1)| + \varepsilon, \quad \Lambda g \leq |\Phi(h_2)| + \varepsilon. \tag{11}$$

There are complex numbers α_i , $|\alpha_i| = 1$, so that $\alpha_i \Phi(h_i) = |\Phi(h_i)|$, i = 1, 2. Then

$$\Lambda f + \Lambda g \le |\Phi(h_1)| + |\Phi(h_2)| + 2\varepsilon \tag{2.7}$$

$$=\Phi(\alpha_1h_1+\alpha_2h_2)+2\varepsilon \tag{2.8}$$

$$\leq \Lambda(|h_1| + |h_2|) + 2\varepsilon \tag{2.9}$$

$$\leq \Lambda(f+g) + 2\varepsilon, \tag{2.10}$$

so that the inequality \geq holds in (10).

Next, choose $h \in C_c(X)$, subject only to the condition $|h| \le f + g$, let $V = \{x : f(x) + g(x) > 0\}$, and define

$$h_1(x) = \frac{f(x)h(x)}{f(x) + g(x)}, \quad h_2(x) = \frac{g(x)h(x)}{f(x) + g(x)} \quad (x \in V),$$
(12)

$$h_1(x) = h_2(x) = 0 \quad (x \notin V).$$
 (2.11)

It is clear that h_1 is continuous at every point of V. If $x_0 \notin V$, then $h(x_0) = 0$; since h is continuous and since $|h_1(x)| \leq |h(x)|$ for all $x \in X$, it follows that x_0 is a point of continuity of h_1 . Thus $h_1 \in C_c(X)$, and the same holds for h_2 .

Since $h_1 + h_2 = h$ and $|h_1| \le f$, $|h_2| \le g$, we have

$$|\Phi(h)| = |\Phi(h_1) + \Phi(h_2)| \le |\Phi(h_1)| + |\Phi(h_2)| \le \Lambda f + \Lambda g.$$
(2.12)

Hence $\Lambda(f+g) \leq \Lambda f + \Lambda g$, and we have proved (10).

If f is now a real function, $f \in C_c(X)$, then $2f^+ = |f| + f$, so that $f^+ \in C_c^+(X)$; likewise, $f^- \in C_c^+(X)$; and since $f = f^+ - f^-$, it is natural to define

$$\Lambda f = \Lambda f^+ - \Lambda f^- \quad (f \in C_c(X), f \text{ real})$$
(13)

and

$$\Lambda(u+iv) = \Lambda u + i\Lambda v. \tag{14}$$

Simple algebraic manipulations, just like those which occur in the proof of Theorem 1.32, show now that our extended functional Λ is linear on $C_c(X)$.

Theorem 9 (Rudin 6.19). If X is a locally compact Hausdorff space, then every bounded linear functional Φ on $C_0(X)$ is represented by a regular complex Borel measure μ , in the sense that

$$\Phi f = \int_X f \, d\mu \tag{1}$$

for every $f \in C_0(X)$.

Proof. Once we have the Λ from Lemma 8, we associate with it a positive Borel measure λ , as in Theorem 2.14. The conclusion of Theorem 2.14 shows that λ is regular if $\lambda(X) < \infty$. Since

$$\lambda(X) = \sup\{\Lambda f : 0 \le f \le 1, f \in C_c(X)\}$$

$$(2.13)$$

and since $|\Lambda f| \leq 1$ if $||f|| \leq 1$, we see that actually $\lambda(X) \leq 1$.

We also deduce from (4) that

$$|\Phi(f)| \le \Lambda(|f|) = \int_X |f| \, d\lambda = \|f\|_1 \quad (f \in C_c(X)).$$
(5)

The last norm refers to the space $L^1(\lambda)$. Thus Φ is a linear functional on $C_c(X)$ of norm at most 1, with respect to the $L^1(\lambda)$ -norm on $C_c(X)$. There is a norm-preserving extension of Φ to a linear functional on $L^1(\lambda)$, and therefore Theorem 6 (the case p = 1) gives a Borel function g, with $|g| \leq 1$, such that

$$\Phi(f) = \int_X fg \, d\lambda \quad (f \in C_c(X)). \tag{6}$$

Each side of (6) is a continuous functional on $C_0(X)$, and $C_c(X)$ is dense in $C_0(X)$. Hence (6) holds for all $f \in C_0(X)$, and we obtain the representation (1) with $d\mu = g d\lambda$.

Lemma 10 (Rudin 6.19). Moreover, the norm of Φ is the total variation of μ :

$$\|\Phi\| = |\mu|(X).$$
(2)

Proof. Since $\|\Phi\| = 1$, (6) shows that

$$\int_{X} |g| \, d\lambda \ge \sup\{|\Phi(f)| : f \in C_0(X), \|f\| \le 1\} = 1.$$
(7)

We also know that $\lambda(X) \leq 1$ and $|g| \leq 1$. These facts are compatible only if $\lambda(X) = 1$ and |g| = 1 a.e. $[\lambda]$. Thus $d|\mu| = |g| d\lambda = d\lambda$, by Theorem 5, and

$$|\mu|(X) = \lambda(X) = 1 = ||\Phi||, \tag{8}$$

which proves (2).

Theorem 11. Placeholder to combine the three results which make up The Reisz Theorem. Proof.

Orthogonal projections

- $\bullet \ \ Destination: \ Mathlib. Analysis. Inner Product Space. Projection$
- Principal reference: Chapter 12 of [Walter Rudin, Functional Analysis.][Rud87].

Let H be a complex Hilbert space and K be a closed subspace of H. We denote K^{\perp} the orthogonal complement of K in H. Any vector $x \in H$ can be written as $x = x_K + x_{K^{\perp}}$, where $x_K \in K, x_{K^{\perp}} \in K^{\perp}$. The map $p(K) : x \to x_K$ is called the orthogonal projection to K.

Lemma 12. It holds that $p(K) = p(K)^2 = p(K)^*$.

Proof. The first equality follows by the uniqueness of the orthogonal decomposition.

The second equality follows because $\langle y, p(K)x \rangle = \langle y, x_K \rangle = \langle y_K, x \rangle = \langle p(K)y, x \rangle$ by orthogonality.

Lemma 13. For $p \in \mathcal{B}(H)$ such that $p = p^2 = p^*$, there is a closed subspace K such that p = p(K).

Proof. By $p = p^2$, it is a projection. Let K be the image of p. Note that x = (p + (1-p))x = px + (1-p)x for any $x \in H$ and $\langle px, (1-p)x \rangle = \langle x, (p-p)x \rangle = 0$. So this gives the orthogonal decomposition.

Lemma 14 (Rudin 12.6, part 1). Let $\{x_n\}$ be a sequence of pairwise orthogonal vectors in H. Then the following are equivalent.

- $\sum_{n=1}^{\infty} x_n$ converges in the norm topology of H.
- $\sum_{n=1}^{\infty} \|x_n\|^2 < \infty.$

Proof. Note that, by orthogonality, $\|\sum_{j=m}^{n} x_j\|^2 = \sum_{j=m}^{n} \|x_j\|^2$. Therefore, the second condition implies that the sequence $\sum_{j=1}^{n} x_j$ is Cauchy.

Conversely, as $\sum_{j=1}^{n} x_j$ converges in norm, the square of its norm $\sum_{j=1}^{n} ||x_j||^2$ converges. \Box

Lemma 15 (Rudin 12.6, part 2). Let $\{x_n\}$ be a sequence of pairwise orthogonal vectors in H. Then the following are equivalent.

- $\sum_{n=1}^{\infty} x_n$ converges in the norm topology of H.
- $\sum_{n=1}^{\infty} \langle x, y \rangle$ converges for all $y \in H$.

Proof. The first condition implies the second by Cauchy-Schwartz. Assume that $\sum_{n=1}^{\infty} \langle x, y \rangle$ converges for all $y \in H$. Define $\Lambda_n y = \sum_{j=1}^n \langle y, x_j \rangle$. As this converges for each y, by Banach-Steinhaus, $\{\|\Lambda_n\|\}$ is bounded. As $\|\Lambda_n\| = \sqrt{\sum_{j=1}^n \|x_j\|}$, this gives the first

Resolutions of the identity

- Destination: ?
- Principal reference: Chapter 12 of [Walter Rudin, Functional Analysis.][Rud87].

Definition 16 (Rudin 12.17). Let \mathfrak{M} be a σ -algebra in a set Ω , and let H be a Hilbert space. For simplicity, we assume that Ω is a locally compact (Hausdorff) space. In this setting, a *resolution of the identity* (on \mathfrak{M}) is a mapping

$$E:\mathfrak{M}\to\mathfrak{M}(H)$$

with the following properties:

- 1. $E(\emptyset) = 0, E(\Omega) = I.$
- 2. Each $E(\omega)$ is a self-adjoint projection.
- 3. $E(\omega' \cap \omega'') = E(\omega')E(\omega'').$
- 4. If $\omega' \cap \omega'' = \emptyset$, then $E(\omega' \cup \omega'') = E(\omega') + E(\omega'')$.
- 5. For every $x \in H$ and $y \in H$, the set function $E_{x,y}$ defined by:

$$E_{x,y}(\omega) = (E(\omega)x, y)$$

is a complex regular Borel measure on \mathcal{M} .

Lemma 17. For any $x \in H$,

$$E_{x,x}(\omega)=(E(\omega)x,x)=\|E(\omega)x\|^2.$$

Proof.

Lemma 18. For any $x \in H$, $E_{x,x}$ is a positive measure on \mathfrak{M} whose total variation is:

$$\|E_{x,x}\| = E_{x,x}(\Omega) = \|x\|^2.$$

Proof.

Lemma 19. For two $\omega_1, \omega_2, E(\omega_1), E(\omega_2)$ commute.

Proof. By (3), any two of the projections $E(\omega)$ commute with each other.

Lemma 20. If $\omega' \cap \omega'' = \emptyset$, then the ranges of $E(\omega')$ and $E(\omega'')$ are orthogonal to each other

Proof. By (1), (3) and Theorem 12.14.

Lemma 21. If $\{\omega_j\}$ is a finite family of mutually disjoint Borel sets, then $E(\bigcup_j \omega_j) = \sum_j E(\omega_j)$.

Proof. By (4) and induction.

Remark: $\sum_{n=1}^{\infty} E(\omega_n)$ does not converge in the norm topology of $\mathcal{B}(H)$.

Lemma 22. Let $x \in H$ and $\{\omega_i\}$ be a countable family of mutually disjoint Borel sets. Then $E(\bigcup_{j} \omega_{j})x = \sum_{j} E(\omega_{j})x$, where the right-hand side converges in the norm topology of H.

Proof. Since $E(\omega_n)E(\omega_m) = 0$ when $n \neq m$, the vectors $E(\omega_n)x$ and $E(\omega_m)x$ are orthogonal to each other (Theorem 12.14). By (5),

$$\sum_{n=1}^{\infty} (E(\omega_n)x, y) = (E(\omega)x, y) \tag{4.1}$$

for every $y \in H$. It now follows from Theorem 14 that:

$$\sum_{n=1}^{\infty} E(\omega_n) x = E(\omega) x$$

The series ((4.1)) converges in the norm topology of H.

Proposition 23 (Rudin 12.18). If E is a resolution of the identity, and if $x \in H$, then

$$\omega \mapsto E(\omega)x$$

is a countably additive H-valued measure on $* \mathfrak{M}$.

Proof. This is the summary of what is proved above.

Moreover, sets of measure zero can be handled in the usual way:

Proposition 24 (Rudin 12.19). Suppose E is a resolution of the identity. If $\omega_n \in \mathfrak{M}$ and $E(\omega_n) = 0 \ {\it for} \ n = 1, 2, 3, ..., \ and \ {\it if}$

$$\omega = \bigcup_{n=1}^{\infty} \omega_n,$$

then $E(\omega) = 0$.

Proof. Since $E(\omega_n) = 0$, $E_{x,x}(\omega_n) = 0$ for every $x \in H$. Since $E_{x,x}$ is countably additive, it follows that $E_{x,x}(\omega) = 0$. But

$$||E(\omega)x||^2 = E_{x,x}(\omega).$$

Hence, $E(\omega) = 0$.

The Spectral Theorem

Functional Analysis by Walter Rudin 1991, extract from Chapter 12

It should perhaps be stated explicitly that the spectrum $\sigma(T)$ of an operator $T \in \mathcal{B}(H)$ will always refer to the full algebra $\mathcal{B}(H)$. In other words, $\lambda \in \sigma(T)$ if and only if $T - \lambda I$ has no inverse in $\mathcal{B}(H)$. Sometimes we shall also be concerned with closed subalgebras A of $\mathcal{B}(H)$ which have the additional property that $I \in A$ and $T^* \in A$ whenever $T \in A$. (Such algebras are sometimes called *-algebras.)

Let A be such an algebra, and suppose that $T \in A$ and $T^{-1} \in \mathcal{B}(H)$. Since TT^* is selfadjoint, $\sigma(TT^*)$ is a compact subset of the real line (Theorem 12.15), hence does not separate \mathbb{C} , and therefore $\sigma_A(TT^*) = \sigma(TT^*)$, by the corollary to Theorem 10.18. Since TT^* is invertible in $\mathcal{B}(H)$, this equality shows that $(TT^*)^{-1} \in A$, and therefore $T^{-1} = T(TT^*)^{-1}$ is also in A.

Thus T has the same spectrum relative to all closed *-algebras in $\mathcal{B}(H)$ that contain T.

Theorem 12.23 will be obtained as a special case of the following result, which deals with normal algebras of operators rather than with individual ones.

Theorem 25 (12.22). If A is a closed normal subalgebra of $\mathcal{B}(H)$ which contains the identity operator I and if Δ is the maximal ideal space of A, then the following assertions are true:

1. There exists a unique resolution E of the identity on the Borel subsets of Δ which satisfies

$$T = \int_{\Delta} \widehat{T} \ dE \tag{5.1}$$

for every $T \in A$, where \widehat{T} is the Gelfand transform of T.

2. The inverse of the Gelfand transform (i.e., the map that takes \widehat{T} back to T) extends to an isometric *-isomorphism of the algebra $L^{\infty}(E)$ onto a closed subalgebra B of $\mathcal{B}(H)$, $B \supset A$, given by

$$\Phi f = \int_{\Delta} f \ dE \quad (f \in L^{\infty}(E)).$$
(5.2)

Explicitly, Φ is linear and multiplicative and satisfies

$$\Phi(\bar{f}) = (\Phi f)^*, \|\Phi f\| = \|f\|_{\infty} \quad (f \in L^{\infty}(E)).$$

3. B is the closure [in the norm topology of $\mathcal{B}(H)$] of the set of all finite linear combinations of the projections $E(\omega)$.

- 4. If $\omega \subset \Delta$ is open and nonempty, then $E(\omega) \neq 0$.
- 5. An operator $S \in \mathcal{B}(H)$ commutes with every $T \in A$ if and only if S commutes with every projection $E(\omega)$.

Proof. Recall that (5.1) is an abbreviation for

$$(Tx,y) = \int_{\Delta} \widehat{T} \ dE_{x,y} \quad (x,y \in H, T \in A).$$
(5.3)

Since $\mathcal{B}(H)$ is a B^* -algebra (Section 12.9), our given algebra A is a commutative B^* -algebra. The Gelfand-Naimark theorem 11.18 asserts therefore that $T \to \widehat{T}$ is an isometric *-isomorphism of A onto $C(\Delta)$.

This leads to an easy proof of the uniqueness of E. Suppose E satisfies (5.3). Since \widehat{T} ranges over all of $C(\Delta)$, the assumed regularity of the complex Borel measures $E_{x,y}$ shows that each $E_{x,y}$ is uniquely determined by (5.3); this follows from the uniqueness assertion that is part of the Riesz representation theorem ([23], Th. 6.19) 11. Since, by definition, $(E(\omega)x, y) = E_{x,y}(\omega)$, each projection $E(\omega)$) is also uniquely determined by (5.3).

This uniqueness proof motivates the following proof of the existence of E. If $x \in H$ and $y \in H$, Theorem 11.18 shows that $\widehat{T} \mapsto (Tx, y)$ is a bounded linear functional on $C(\Delta)$, of norm $\leq \|x\| \|y\|$, since $\|\widehat{T}\|_{\infty} = \|T\|$. The Riesz representation theorem supplies us therefore with unique regular complex Borel measures $\mu_{x,y}$ on Δ such that

$$(Tx,y) = \int_{\Delta} \widehat{T} \ d\mu_{x,y} \quad (x,y \in H, T \in A).$$
(5.4)

For fixed T, the left side of (5.4) is a bounded sesquilinear functional on H, hence so is the right side, and it remains so if the continuous function \widehat{T} is replaced by an arbitrary bounded Borel function f. To each such f corresponds therefore an operator $\Phi f \in \mathcal{B}(H)$ (see Theorem 12.8) such that

$$((\Phi f)x, y) = \int_{\Delta} f \ d\mu_{x,y} \quad (x, y \in H).$$

$$(5.5)$$

Comparison of (5.4) and (5.5) shows that $\Phi \hat{T} = T$. Thus Φ is an extension of the inverse of the Gelfand transform.

It is clear that Φ is linear.

Part of the Gelfand-Naimark theorem states that T is self-adjoint if and only if \hat{T} is real-valued. For such T,

$$\int_{\Delta}\widehat{T} \ d\mu_{x,y} = (Tx,y) = (x,Ty) = \overline{(Ty,x)} = \overline{\int_{\Delta}\widehat{T}d\mu_{y,x}},$$

and this implies that $\mu_{y,x} = \overline{\mu_{x,y}}$. Hence,

$$((\Phi\overline{f})x,y) = \int_{\Delta} \overline{f} \ d\mu_{x,y} = \overline{\int_{\Delta} f \ d\mu_{y,x}} = \overline{((\Phi f)y,x)} = (x,(\Phi f)y)$$

for all $x, y \in H$, so that

$$\Phi \bar{f} = (\Phi f)^*. \tag{5.6}$$

Our next objective is the equality

$$\Phi(fg) = (\Phi f)(\Phi g) \tag{5.7}$$

for bounded Borel functions f, g on Δ . If $S \in A$ and $T \in A$, then $(ST)^{\wedge} = \widehat{ST}$; hence

$$\int_{\Delta} \hat{S} \hat{T} \ d\mu_{x,y} = (STx,y) = \int_{\Delta} \hat{S} \ d\mu_{Tx,y}.$$

This holds for every $\widehat{S} \in C(\Delta)$; hence the two integrals are equal if \widehat{S} is replaced by any bounded Borel function f. Thus

$$\int_{\Delta} f \widehat{T} d\mu_{x,y} = \int_{\Delta} f \ d\mu_{Tx,y} = ((\Phi f)Tx,y) = (Tx,z) = \int_{\Delta} \widehat{T} d\mu_{x,z},$$

where we put $z = (\Phi f)^* y$. Again, the first and last integrals remain equal if \widehat{T} is replaced by g. This gives

$$\begin{split} (\Phi(fg)x,y) &= \int_{\Delta} fg \ d\mu_{x,y} = \int_{\Delta} g \ d\mu_{x,z} \\ &= ((\Phi g)x,z) = ((\Phi g)x, (\Phi f)^*y) = (\Phi(f)\Phi(g)x, y), \end{split}$$

and (5.7) is proved.

We are finally ready to define E: If ω is a Borel subset of Δ , let χ_{ω} be its characteristic function, and put

$$E(\omega) = \Phi(\chi_{\omega}).$$

By (5.7), $E(\omega \cap \omega') = E(\omega)E(\omega')$. With $\omega' = \omega$, this shows that each $E(\omega)$ is a projection. Since Φf is self-adjoint when f is real, by (5.6), each $E(\omega)$ is self-adjoint. It is clear that $E(\emptyset) = \Phi(0) = 0$. That $E(\Delta) = I$ follows from (5.4) and (5.5). The finite additivity of E is a consequence of (5.5), and, for all $x, y \in H$,

$$E_{x,y}(\omega) = (E(\omega)x,y) = \int_{\Delta} \chi_{\omega} \ d\mu_{x,y} = \mu_{x,y}(\omega).$$

Thus (5.5) becomes (5.2). That $\|\Phi f\| = \|f\|_{\infty}$ follows now from Theorem 12.21.

This completes the proof of (1) and (2).

Part (3) is now clear because every $f \in L^{\infty}(E)$ is a uniform limit of simple functions (i.e., of functions with only finitely many values).

Suppose next that ω is open and $E(\omega) = 0$. If $T \in A$ and \widehat{T} has its support in ω , (5.1) implies that T = 0; hence $\widehat{T} = 0$. Since $\widehat{A} = C(\Delta)$, Urysohn's lemma implies now that $\omega = \emptyset$. This proves (4).

To prove (5), choose $S \in \mathcal{B}(H)$, $x \in H$, $y \in H$, and put $z = S^*y$. For any $T \in A$ and any Borel set $\omega \subset \Delta$ we then have

$$(STx, y) = (Tx, z) = \int_{\Delta} \widehat{T} \ dE_{x, z}, \tag{5.8}$$

$$(TSx, y) = \int_{\Delta} \hat{T} \ dE_{Sx, y}, \tag{5.9}$$

$$(SE(\omega)x,y)=(E(\omega)x,z)=E_{x,z}(\omega),$$

$$(E(\omega)Sx,y)=E_{Sx,y}(\omega).$$

If ST = TS for every $T \in A$, the measures in (5.8) and (5.9) are equal, so that $SE(\omega) = E(\omega)S$. The same argument establishes the converse.