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Chapter 1

Introduction

The principal assertion of the spectral theorem is that every bounded normal operator T on a
Hilbert space induces (in a canonical way) a resolution E of the identity on the Borel subsets of
its spectrum o(7T") and that T can be reconstructed from F by an integral. A large part of the
theory of normal operators depends on this fact.



Chapter 2

The Reisz Theorem

o Destination: MeasureTheory/Integral/RieszMarkovKakutam/ComplexRMK

o Principal reference: Theorem 6.19 of [Walter Rudin, Real and Complex Analysis.][Rud87].

The main statement is:

If X is a locally compact Hausdorff space, then every bounded linear functional ® on Cj(X) is
represented by a unique regular complex Borel measure y, in the sense that

@f:/deu

for every f € Cy(X). Moreover, the norm of ® is the total variation of u:

2] = [p](X).

Definition 1 (Variation of a Vector-Valued Measure). Let (X, .4) be a measurable space and
let Y be a Banach space. For a vector-valued measure y : A — Y, the variation of y is the set
function |u| : A — [0, +00] defined by

\u|(E) = sup {Z By : {E}, Ey, ..., E,} is a finite partition of E in /1}
1=1

for each F € A.
Equivalently, the above definition can be written as:

n

|@|(E) = sup {Z“/L(El)ly 1B, € A, E;NE; =) for i # j, UEi - E}

i=1 =1

Theorem 2 (Rudin 6.12 (polar representation of a complex measure)). Let p be a complex
measure on a o-algebra M in X. Then there is a measurable function h such that |h(z)| =1 for
all x € X and such that

dp = hdy|. (2.1)

Proof. This rather depends on how the integral with respect to a complex measure is defined.
See [Rudin, Theorem 6.12] for details. O



Definition 3. Let X be a locally compact Hausdorff space. Associated to every bounded linear
functional ® on Cy(X) we define a regular complex Borel measure p which we call the Riesz
Measure associated to ®.

TO DO: insert details from the proof of the exact definition.

In order to prove the main result we divide the result into several smaller results.
Theorem 4 (Rudin 3.14). For 1 <p < oo, C,(X) is dense in LP ().

Proof. Define S as in Theorem 3.13. If s € S and € > 0, there exists a g € C,(X) such that
g(x) = s(x) except on a set of measure < ¢, and |g| < ||s]|,, (Lusin’s theorem). Hence

lg = sll, < 2e"7ls] . (2.2)
Since S is dense in LP(u), this completes the proof. O

Theorem 5 (Rudin 6.13). Suppose u is a positive measure on M, g € L' (1), and
AME) = /gdu (E eMm). (2.3)
E

Then
MwmzfmmN<Eem> (2.4)
E

Proof. By Theorem 2, there is a function h, of absolute value 1, such that dA = hd|A|. By
hypothesis, d\ = gdu. Hence
hd|A| = gdp.

This gives d|\| = hgdp. (Compare with Theorem 1.29.) Since [A| > 0 and p > 0, it follows that
hg > 0 a.e. [u], so that hg = |g| a.e. [u]. O O

Theorem 6 (Rudin 6.16). Suppose 1 < p < 00, p is a o-finite positive measure on X, and P is
a bounded linear functional on LP(u). Then there is a unique g € L9(u), where q is the exponent
conjugate to p, such that

o(f) = [ fadu (f € L) (25)
X
Moreover, if ® and g are related as in (1), we have

1] = lgll,- (2.6)

In other words, L(u) is isometrically isomorphic to the dual space of LP(u), under the stated
conditions.

Proof. Rudin 6.16: Duality of L' and L° (not in Mathlib https://leanprover.zulipchat.
com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/Lp.20duality/near/495207025)
O

Lemma 7. Let X be a locally compact Hausdorff space, and let ® be a bounded linear functional
on Cy(X). Suppose that p, v are regular complex Borel measure such that

@f:/xfdu:/xfdy.

Then p = v.


https://leanprover.zulipchat.com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/Lp.20duality/near/495207025
https://leanprover.zulipchat.com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/Lp.20duality/near/495207025

Proof. Suppose p is a regular complex Borel measure on X and [ fdu = 0 for all f € Cy(X).
By Theorem 2 there is a Borel function h, with |h| = 1, such that du = hd|u|. For any sequence
{fn} in Cy(X) we then have

() = /X (h— f)hdlu] < /X o £, dlpl, (3)

and since C,(X) is dense in L*(|u|) (Theorem 4), {f,} can be so chosen that the last expression
in (3) tends to 0 as n — oo. Thus |u|(X) =0, and g = 0. It is easy to see that the difference of
two regular complex Borel measures on X is regular. This shows that at most one p corresponds
to each . O

Lemma 8. Consider a given bounded linear functional ® on Cy(X). Assume |®| = 1. (Update
statement to be the general case.) We shall construct a positive linear functional A on C.(X),
such that

[2(NHI <AL < I (F € Cu(X)), (4)

where || f|| denotes the supremum norm.

Proof. Assume ||®| = 1, without loss of generality.
So all depends on finding a positive linear functional A that satisfies (4). If f € CF(X) [the
class of all nonnegative real members of C,(X)], define

Af = sup{|@(h)| : h € C.(X), |h] < [} 9)

Then Af > 0, A satisfies (4), 0 < f; < fy implies Af; < Afsy, and A(ef) = cAf ifcis a
positive constant. We have to show that

A(f+9)=Af+Ag (fandgeCl(X)), (10)

and we then have to extend A to a linear functional on C,(X).
Fix f and g € CI(X). If € > 0, there exist hy and h, € C.(X) such that |hy| < f, |hy| < g,
and
Af <|®(hy)|+e, Ag<|P(hy)|+e. (11)

There are complex numbers «;, |ao;| = 1, so that a;®(h;) = |®(h;)], ¢ = 1,2. Then

Af+Ag < |®(hy)] + |®(hy)| + 2¢ (2.7
= ®(ayhy + ayhy) + 2¢ (2.8)
< A(|hy| 4 |hyl) + 2¢ (2.9)
<A(f+9) + 2, (2.10)

so that the inequality > holds in (10).
Next, choose h € C,(X), subject only to the condition |h| < f+g,let V = {z: f(z)+g(z) >
0}, and define

_ _J@h@
"= )+ o)
hy(z) = hy(z) =0 (2 ¢ V). (2.11)

(z V), (12)

It is clear that h, is continuous at every point of V. If zy ¢ V, then h(z,) = 0; since h is
continuous and since |hy(z)] < |h(x)| for all x € X, it follows that z, is a point of continuity of
hy. Thus hy € C (X), and the same holds for h,.



Since hy + hy = h and |hy| < f, |hy| < g, we have
[@(h)] = [®(hy) + ®(hy)| < [®(hy)] + [®(hy)] < Af + Ag. (2.12)

Hence A(f + g) < Af + Ag, and we have proved (10).
If f is now a real function, f € C.(X), then 2f* = |f| + f, so that f* € CF(X); likewise,
f~ € CF(X); and since f = fT — f7, it is natural to define

Af=AfT=Af~ (f € C(X), f real) (13)

and
A(u +iv) = Au+ iAv. (14)
Simple algebraic manipulations, just like those which occur in the proof of Theorem 1.32,
show now that our extended functional A is linear on C,(X). O

Theorem 9 (Rudin 6.19). If X is a locally compact Hausdorff space, then every bounded linear
functional ® on Cy(X) is represented by a regular complex Borel measure i, in the sense that

@f:/fdu (1)
X

for every f € Cy(X).

Proof. Once we have the A from Lemma 8, we associate with it a positive Borel measure A, as
in Theorem 2.14. The conclusion of Theorem 2.14 shows that A is regular if A\(X) < oo. Since

AMX)=sup{Af:0< f<1,feC.(X)} (2.13)

and since |Af| < 1if ||f]| < 1, we see that actually A(X) < 1.
We also deduce from (4) that

|<I>(f)|SA(fI):/XIfId/\ZIIfll (f € C(X)). ()

The last norm refers to the space L'(\). Thus ® is a linear functional on C,(X) of norm at
most 1, with respect to the L*(\)-norm on C,(X). There is a norm-preserving extension of ® to
a linear functional on L'()), and therefore Theorem 6 (the case p = 1) gives a Borel function g,
with |g|] < 1, such that

o(f) = [ f9dx (€ C.(X)). (6)

p'e
Each side of (6) is a continuous functional on Cy(X), and C,(X) is dense in Cy(X). Hence
(6) holds for all f € Cy(X), and we obtain the representation (1) with du = gdA. O

Lemma 10 (Rudin 6.19). Moreover, the norm of ® is the total variation of p:

|12] = [p](X). (2)
Proof. Since ||®|| = 1, (6) shows that

/X gl dA > sup{|®(f)] : f € Co(X), 1] <1} = 1. (1)

We also know that A(X) < 1 and |g| < 1. These facts are compatible only if A(X) = 1 and
lg| =1 a.e. [A]. Thus d|u| = |g| d\ = dA, by Theorem 5, and

[l(X) = MX) =1 = [@], (®)
which proves (2). O



Theorem 11. Placeholder to combine the three results which make up The Reisz Theorem.

Proof.



Chapter 3

Orthogonal projections

e Destination: Mathlib.Analysis.InnerProductSpace.Projection

o Principal reference: Chapter 12 of [Walter Rudin, Functional Analysis.][Rud87].

Let H be a complex Hilbert space and K be a closed subspace of H. We denote K+ the
orthogonal complement of K in H. Any vector x € H can be written as ¢ = xy + x g1, where
2 € K w0 € K+, The map p(K) : & — xj is called the orthogonal projection to K.

Lemma 12. It holds that p(K) = p(K)? = p(K)*.

Proof. The first equality follows by the uniqueness of the orthogonal decomposition.
The second equality follows because (y, p(K)x) = (y,zx) = (Y, ) = (p(K)y, ) by orthog-
onality. O

Lemma 13. For p € B(H) such that p = p? = p*, there is a closed subspace K such that
p = p(K).

Proof. By p = p?, it is a projection. Let K be the image of p. Note that z = (p + (1 —p))x =
px + (1 —p)x for any x € H and (pz, (1 —p)z) = (x,(p — p)z) = 0. So this gives the orthogonal
decomposition. O

Lemma 14 (Rudin 12.6, part 1). Let {x,} be a sequence of pairwise orthogonal vectors in H.
Then the following are equivalent.

. 220:1 x,, converges in the norm topology of H.

. 52 [l < oo,

Proof. Note that, by orthogonality, | Z?:m z)? = Z;l:m || Therefore, the second condition
implies that the sequence Z;ll z; is Cauchy.

n . . n
Conversely, as Zj:l x; converges in norm, the square of its norm Zj:1 ;| converges. O

Lemma 15 (Rudin 12.6, part 2). Let {z,} be a sequence of pairwise orthogonal vectors in H.
Then the following are equivalent.

. ZOC x, converges in the norm topology of H.

n=1“n

. ZZC:l(:a y) converges for all y € H.



Proof. The first condition implies the second by Cauchy-Schwartz.
Assume that Y>> (z,y) converges for ally € H. Define A,y = Z;.L:l(y, x;). As this converges

for each y, by Banach-Steinhaus, {|A,,||} is bounded. As |A,,| = 4 /Z;.Lzl [;], this gives the first

condition. O



Chapter 4

Resolutions of the identity

e Destination: ?

o Principal reference: Chapter 12 of [Walter Rudin, Functional Analysis.][Rud87].

Definition 16 (Rudin 12.17). Let 9t be a o-algebra in a set 2, and let H be a Hilbert space. For
simplicity, we assume that €2 is a locally compact (Hausdorff) space. In this setting, a resolution
of the identity (on 9) is a mapping

E: M — M(H)
with the following properties:

—_

. E0)=0,EQ) =1
2. Each F(w) is a self-adjoint projection.
EWw Nw”)=EW)EW").

- W

If ' Nw” =0, then E(w Uw”) = E(W) + E(W”).
5. For every z € H and y € H, the set function £, , defined by:
E, y(w) = (E(w)z,y)
is a complex regular Borel measure on M.
Lemma 17. For any x € H,

E

a:,:z:(

w) = (B(w)z,z) = |E(w)z|?.
Proof. O

Lemma 18. For any x € H, E, , is a positive measure on M whose total variation is:

IE

x

ol = E

T,z

(@) = |=*.

Proof.



Lemma 19. For two wy,w,, E(w;), E(wy) commute.

Proof. By (3), any two of the projections F(w) commute with each other. O

Lemma 20. If o' Nw” =0, then the ranges of E(w’) and E(w”) are orthogonal to each other

Proof. By (1), (3) and Theorem 12.14. O

Lemma 21. If{w;} is a finite family of mutually disjoint Borel sets, then E(U] w;) = Zj E(w;).

Proof. By (4) and induction. O
Remark: Zzozl E(w,,) does not converge in the norm topology of B(H).

Lemma 22. Let x € H and {wj} be a countable family of mutually disjoint Borel sets. Then
E(U] wj)T = Zj E(w;)x, where the right-hand side converges in the norm topology of H.

Proof. Since E(w,,)E(w,,) = 0 when n # m, the vectors F(w,,)x and FE(w,,)x are orthogonal to
each other (Theorem 12.14). By (5),

(E(wy)z,y) = (E(w)z,y) (4.1)
n=1
for every y € H. It now follows from Theorem 14 that:
oo
Z E(w,)r = E(w)z.
n=1

The series ((4.1)) converges in the norm topology of H. O
Proposition 23 (Rudin 12.18). If E is a resolution of the identity, and if x € H, then
wh B(w)z
is a countably additive H-valued measure on™* 9.
Proof. This is the summary of what is proved above. O

Moreover, sets of measure zero can be handled in the usual way:

Proposition 24 (Rudin 12.19). Suppose E is a resolution of the identity. If w,, € M and
E(w,) =0 forn=1,2,3,..., and if
o0
w="]wn
n=1

then E(w) = 0.

Proof. Since E(w,,) = 0, E, ,(w,) = 0 for every x € H. Since E,
follows that E, ,(w) = 0. But

. is countably additive, it

|E(w)z]* = E, ,(w).

5

Hence, E(w) = 0. O

10



Chapter 5

The Spectral Theorem

Functional Analysis by Walter Rudin 1991, extract from Chapter 12

It should perhaps be stated explicitly that the spectrum o(7T) of an operator T' € B(H)
will always refer to the full algebra B(H). In other words, A € o(T) if and only if T — Al has
no inverse in B(H). Sometimes we shall also be concerned with closed subalgebras A of B(H)
which have the additional property that I € A and T* € A whenever T € A. (Such algebras are
sometimes called *-algebras.)

Let A be such an algebra, and suppose that T € A and T~! € B(H). Since TT* is self-
adjoint, o(TT*) is a compact subset of the real line (Theorem 12.15), hence does not separate
C, and therefore o 4 (TT*) = o(TT*), by the corollary to Theorem 10.18. Since T'T* is invertible
in B(H), this equality shows that (TT*)~' € A, and therefore T~! = T\TT*)~! is also in A.

Thus T has the same spectrum relative to all closed *-algebras in B(H) that contain T'.

Theorem 12.23 will be obtained as a special case of the following result, which deals with
normal algebras of operators rather than with individual ones.

Theorem 25 (12.22). If A is a closed normal subalgebra of B(H) which contains the identity
operator I and if A is the maximal ideal space of A, then the following assertions are true:

1. There exists a unique resolution E of the identity on the Borel subsets of A which satisfies
T = / T dE (5.1)
A

for every T € A, where T is the Gelfand transform of T'.

2. The inverse of the Gelfand transform (i.e., the map that takes T back to T) extends to
an isometric *-isomorphism of the algebra L*°(E) onto a closed subalgebra B of B(H),
B D A, given by

of = / fdE (f € L*®(E)). (5.2)
A
Explicitly, ® is linear and multiplicative and satisfies
o(f) = (@) |2fl =/l (f € L>(E)).

3. B is the closure [in the norm topology of B(H)] of the set of all finite linear combinations
of the projections E(w).

11



4. If w C A is open and nonempty, then E(w) # 0.

5. An operator S € B(H) commutes with every T € A if and only if S com mutes with every
projection E(w).

Proof. Recall that (5.1) is an abbreviation for
(Tx,y) = / T dE,, (z,y€H,TEA). (5.3)
A

Since B(H) is a B*-algebra (Section 12.9), our given algebra A is a commutative B*-algebra.
The Gelfand-Naimark theorem 11.18 asserts therefore that 7 — T is an isometric *_isomorphism
of A onto C(A).

This leads to an easy proof of the uniqueness of E. Suppose E satisfies (5.3). Since T ranges
over all of C(A), the assumed regularity of the complex Borel measures E, , shows that each

E, , is uniquely determined by (5.3); this follows from the uniqueness assert?on that is part of
the Riesz representation theorem ([23], Th. 6.19) 11. Since, by definition, (E(w)z,y) = E, ,(w),
each projection F(w)) is also uniquely determined by (5.3).

This uniqueness proof motivates the following proof of the existence of E. If x € H and

y € H, Theorem 11.18 shows that T — (Tz,y) is a bounded linear functional on C(A), of norm
< |z|l|lyl, since | T||oc = |T||. The Riesz representation theorem supplies us therefore with unique
regular complex Borel measures f,, , on A such that

(Tx,y) = / T dp,, (v,y€H,T € A). (5.4)
A

For fixed T, the left side of (5.4) is a bounded sesquilinear functional on H, hence so is the right
side, and it remains so if the continuous function 7' is replaced by an arbitrary bounded Borel
function f. To each such f corresponds therefore an operator ®f € B(H) (see Theorem 12.8)
such that

(@f)z,y) = /A fdu,, (r.yeH) (5.5)

Comparison of (5.4) and (5.5) shows that ®1' = 7. Thus ® is an extension of the inverse of
the Gelfand transform.

It is clear that @ is linear.

Part of the Gelfand-Naimark theorem states that T is self-adjoint if and only if T is real-
valued. For such T,

/T Ay y = (T, y) = (z,Ty) = (Ty,z) = / Tdp,,,
A A
and this implies that p, , =@, . Hence,

(@), y) = /A Fdu,, = /A fduy, = (@N5 ) = (2. (Bf)y)

for all z,y € H, so that

of =(2f)". (5.6)

Our next objective is the equality

12



®(fg) = (2f)(®g) (5.7)
for bounded Borel functions f,g on A. If S € A and T € A, then (ST)" = ST hence

A A

This holds for every S e C(A); hence the two integrals are equal if S is replaced by any
bounded Borel function f. Thus

[ 1Ty = [ £ dur,, = (@700 = (T0,2) = [ i,
A A A

where we put z = (®f)*y. Again, the first and last integrals remain equal if T is replaced by
g. This gives

(@(f9)z,y) Z/Afg dum,y=/Ag dp,

= ((®g)z, 2) = ((®g)z, (f)*y) = ((f)P(9)7, y),

and (5.7) is proved.
We are finally ready to define E: If w is a Borel subset of A, let x,, be its characteristic
function, and put

E(w) = ®(xo)-

By (5.7), E(wNw') = E(w)E(w"). With ' = w, this shows that each E(w) is a projection.
Since ®@f is self-adjoint when f is real, by (5.6), each E(w) is self-adjoint. It is clear that
E(®) = ®(0) = 0. That E(A) = I follows from (5.4) and (5.5). The finite additivity of E is a
consequence of (5.5), and, for all x,y € H,

B, () = (E)z,y) = /A Yo diny = fiay ().

Thus (5.5) becomes (5.2). That |®f| = | f|. follows now from Theorem 12.21.

This completes the proof of (1) and (2).

Part (3) is now clear because every f € L*°(FE) is a uniform limit of simple functions (i.e., of
functions with only finitely many values).

Suppose next that w is open and E(w) =0. If T' € A and T has its support in w, (5.1) implies
that T = 0; hence T = 0. Since A = C(A), Urysohn’s lemma implies now that w = (). This
proves (4).

To prove (5), choose S € B(H), x € H, y € H, and put z = S*y. For any T € A and any
Borel set w C A we then have

(8Tay) = (To.) = [ TdE, . (5.8)
A
(TSz,y) = / T dEg,.,, (5.9)
A

(SE(w)z,y) = (E(w)z,2) = E, (),

Uy

13



If ST =T8S for every T € A, the measures in (5.8) and (5.9) are equal, so that SE(w)
E(w)S. The same argument establishes the converse.

14

0ol



	Introduction
	The Reisz Theorem
	Orthogonal projections
	Resolutions of the identity
	The Spectral Theorem

