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Chapter 1

Introduction

The principal assertion of the spectral theorem is that every bounded normal operator 𝑇 on a
Hilbert space induces (in a canonical way) a resolution 𝐸 of the identity on the Borel subsets of
its spectrum 𝜎(𝑇 ) and that 𝑇 can be reconstructed from 𝐸 by an integral. A large part of the
theory of normal operators depends on this fact.
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Chapter 2

The Reisz Theorem

• Destination: MeasureTheory/Integral/RieszMarkovKakutam/ComplexRMK

• Principal reference: Theorem 6.19 of [Walter Rudin, Real and Complex Analysis.][Rud87].

The main statement is:
If 𝑋 is a locally compact Hausdorff space, then every bounded linear functional Φ on 𝐶0(𝑋) is
represented by a unique regular complex Borel measure 𝜇, in the sense that

Φ𝑓 = ∫
𝑋

𝑓 𝑑𝜇

for every 𝑓 ∈ 𝐶0(𝑋). Moreover, the norm of Φ is the total variation of 𝜇:

‖Φ‖ = |𝜇|(𝑋).

Definition 1 (Variation of a Vector-Valued Measure). Let (𝑋, 𝒜) be a measurable space and
let 𝑌 be a Banach space. For a vector-valued measure 𝜇 ∶ 𝒜 → 𝑌 , the variation of 𝜇 is the set
function |𝜇| ∶ 𝒜 → [0, +∞] defined by

|𝜇|(𝐸) = sup{
𝑛

∑
𝑖=1

‖𝜇(𝐸𝑖)‖𝑌 ∶ {𝐸1, 𝐸2, … , 𝐸𝑛} is a finite partition of 𝐸 in 𝒜}

for each 𝐸 ∈ 𝒜.

Equivalently, the above definition can be written as:

|𝜇|(𝐸) = sup{
𝑛

∑
𝑖=1

‖𝜇(𝐸𝑖)‖𝑌 ∶ 𝐸𝑖 ∈ 𝒜, 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for 𝑖 ≠ 𝑗,
𝑛

⋃
𝑖=1

𝐸𝑖 ⊆ 𝐸}

Theorem 2 (Rudin 6.12 (polar representation of a complex measure)). Let 𝜇 be a complex
measure on a 𝜎-algebra 𝔐 in 𝑋. Then there is a measurable function ℎ such that |ℎ(𝑥)| = 1 for
all 𝑥 ∈ 𝑋 and such that

𝑑𝜇 = ℎ 𝑑|𝜇|. (2.1)

Proof. This rather depends on how the integral with respect to a complex measure is defined.
See [Rudin, Theorem 6.12] for details.
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Definition 3. Let 𝑋 be a locally compact Hausdorff space. Associated to every bounded linear
functional Φ on 𝐶0(𝑋) we define a regular complex Borel measure 𝜇 which we call the Riesz
Measure associated to Φ.

TO DO: insert details from the proof of the exact definition.

In order to prove the main result we divide the result into several smaller results.

Theorem 4 (Rudin 3.14). For 1 ≤ 𝑝 < ∞, 𝐶𝑐(𝑋) is dense in 𝐿𝑝(𝜇).
Proof. Define 𝑆 as in Theorem 3.13. If 𝑠 ∈ 𝑆 and 𝜀 > 0, there exists a 𝑔 ∈ 𝐶𝑐(𝑋) such that
𝑔(𝑥) = 𝑠(𝑥) except on a set of measure < 𝜀, and |𝑔| ≤ ‖𝑠‖∞ (Lusin’s theorem). Hence

‖𝑔 − 𝑠‖𝑝 ≤ 2𝜀1/𝑝‖𝑠‖∞. (2.2)

Since 𝑆 is dense in 𝐿𝑝(𝜇), this completes the proof.

Theorem 5 (Rudin 6.13). Suppose 𝜇 is a positive measure on 𝔐, 𝑔 ∈ 𝐿1(𝜇), and

𝜆(𝐸) = ∫
𝐸

𝑔 𝑑𝜇 (𝐸 ∈ 𝔐). (2.3)

Then
|𝜆|(𝐸) = ∫

𝐸
|𝑔| 𝑑𝜇 (𝐸 ∈ 𝔐). (2.4)

Proof. By Theorem 2, there is a function ℎ, of absolute value 1, such that 𝑑𝜆 = ℎ 𝑑|𝜆|. By
hypothesis, 𝑑𝜆 = 𝑔 𝑑𝜇. Hence

ℎ 𝑑|𝜆| = 𝑔 𝑑𝜇.
This gives 𝑑|𝜆| = ℎ̄𝑔 𝑑𝜇. (Compare with Theorem 1.29.) Since |𝜆| ≥ 0 and 𝜇 ≥ 0, it follows that
ℎ̄𝑔 ≥ 0 a.e. [𝜇], so that ℎ̄𝑔 = |𝑔| a.e. [𝜇].
Theorem 6 (Rudin 6.16). Suppose 1 ≤ 𝑝 < ∞, 𝜇 is a 𝜎-finite positive measure on 𝑋, and Φ is
a bounded linear functional on 𝐿𝑝(𝜇). Then there is a unique 𝑔 ∈ 𝐿𝑞(𝜇), where 𝑞 is the exponent
conjugate to 𝑝, such that

Φ(𝑓) = ∫
𝑋

𝑓𝑔 𝑑𝜇 (𝑓 ∈ 𝐿𝑝(𝜇)). (2.5)

Moreover, if Φ and 𝑔 are related as in (1), we have

‖Φ‖ = ‖𝑔‖𝑞. (2.6)

In other words, 𝐿𝑞(𝜇) is isometrically isomorphic to the dual space of 𝐿𝑝(𝜇), under the stated
conditions.

Proof. Rudin 6.16: Duality of 𝐿1 and 𝐿∞ (not in Mathlib https://leanprover.zulipchat.
com/#narrow/channel/217875-Is-there-code-for-X.3F/topic/Lp.20duality/near/495207025)

Lemma 7. Let 𝑋 be a locally compact Hausdorff space, and let Φ be a bounded linear functional
on 𝐶0(𝑋). Suppose that 𝜇, 𝜈 are regular complex Borel measure such that

Φ𝑓 = ∫
𝑋

𝑓 𝑑𝜇 = ∫
𝑋

𝑓 𝑑𝜈.

Then 𝜇 = 𝜈.
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Proof. Suppose 𝜇 is a regular complex Borel measure on 𝑋 and ∫ 𝑓 𝑑𝜇 = 0 for all 𝑓 ∈ 𝐶0(𝑋).
By Theorem 2 there is a Borel function ℎ, with |ℎ| = 1, such that 𝑑𝜇 = ℎ 𝑑|𝜇|. For any sequence
{𝑓𝑛} in 𝐶0(𝑋) we then have

|𝜇|(𝑋) = ∫
𝑋

(ℎ̄ − 𝑓𝑛)ℎ 𝑑|𝜇| ≤ ∫
𝑋

|ℎ̄ − 𝑓𝑛| 𝑑|𝜇|, (3)

and since 𝐶𝑐(𝑋) is dense in 𝐿1(|𝜇|) (Theorem 4), {𝑓𝑛} can be so chosen that the last expression
in (3) tends to 0 as 𝑛 → ∞. Thus |𝜇|(𝑋) = 0, and 𝜇 = 0. It is easy to see that the difference of
two regular complex Borel measures on 𝑋 is regular. This shows that at most one 𝜇 corresponds
to each Φ.

Lemma 8. Consider a given bounded linear functional Φ on 𝐶0(𝑋). Assume ‖Φ‖ = 1. (Update
statement to be the general case.) We shall construct a positive linear functional Λ on 𝐶𝑐(𝑋),
such that

|Φ(𝑓)| ≤ Λ(|𝑓|) ≤ ‖𝑓‖ (𝑓 ∈ 𝐶𝑐(𝑋)), (4)
where ‖𝑓‖ denotes the supremum norm.

Proof. Assume ‖Φ‖ = 1, without loss of generality.
So all depends on finding a positive linear functional Λ that satisfies (4). If 𝑓 ∈ 𝐶+

𝑐 (𝑋) [the
class of all nonnegative real members of 𝐶𝑐(𝑋)], define

Λ𝑓 = sup{|Φ(ℎ)| ∶ ℎ ∈ 𝐶𝑐(𝑋), |ℎ| ≤ 𝑓}. (9)

Then Λ𝑓 ≥ 0, Λ satisfies (4), 0 ≤ 𝑓1 ≤ 𝑓2 implies Λ𝑓1 ≤ Λ𝑓2, and Λ(𝑐𝑓) = 𝑐Λ𝑓 if 𝑐 is a
positive constant. We have to show that

Λ(𝑓 + 𝑔) = Λ𝑓 + Λ𝑔 (𝑓 and 𝑔 ∈ 𝐶+
𝑐 (𝑋)), (10)

and we then have to extend Λ to a linear functional on 𝐶𝑐(𝑋).
Fix 𝑓 and 𝑔 ∈ 𝐶+

𝑐 (𝑋). If 𝜀 > 0, there exist ℎ1 and ℎ2 ∈ 𝐶𝑐(𝑋) such that |ℎ1| ≤ 𝑓 , |ℎ2| ≤ 𝑔,
and

Λ𝑓 ≤ |Φ(ℎ1)| + 𝜀, Λ𝑔 ≤ |Φ(ℎ2)| + 𝜀. (11)
There are complex numbers 𝛼𝑖, |𝛼𝑖| = 1, so that 𝛼𝑖Φ(ℎ𝑖) = |Φ(ℎ𝑖)|, 𝑖 = 1, 2. Then

Λ𝑓 + Λ𝑔 ≤ |Φ(ℎ1)| + |Φ(ℎ2)| + 2𝜀 (2.7)
= Φ(𝛼1ℎ1 + 𝛼2ℎ2) + 2𝜀 (2.8)
≤ Λ(|ℎ1| + |ℎ2|) + 2𝜀 (2.9)
≤ Λ(𝑓 + 𝑔) + 2𝜀, (2.10)

so that the inequality ≥ holds in (10).
Next, choose ℎ ∈ 𝐶𝑐(𝑋), subject only to the condition |ℎ| ≤ 𝑓 + 𝑔, let 𝑉 = {𝑥 ∶ 𝑓(𝑥) + 𝑔(𝑥) >

0}, and define

ℎ1(𝑥) = 𝑓(𝑥)ℎ(𝑥)
𝑓(𝑥) + 𝑔(𝑥) , ℎ2(𝑥) = 𝑔(𝑥)ℎ(𝑥)

𝑓(𝑥) + 𝑔(𝑥) (𝑥 ∈ 𝑉 ), (12)

ℎ1(𝑥) = ℎ2(𝑥) = 0 (𝑥 ∉ 𝑉 ). (2.11)

It is clear that ℎ1 is continuous at every point of 𝑉 . If 𝑥0 ∉ 𝑉 , then ℎ(𝑥0) = 0; since ℎ is
continuous and since |ℎ1(𝑥)| ≤ |ℎ(𝑥)| for all 𝑥 ∈ 𝑋, it follows that 𝑥0 is a point of continuity of
ℎ1. Thus ℎ1 ∈ 𝐶𝑐(𝑋), and the same holds for ℎ2.
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Since ℎ1 + ℎ2 = ℎ and |ℎ1| ≤ 𝑓 , |ℎ2| ≤ 𝑔, we have

|Φ(ℎ)| = |Φ(ℎ1) + Φ(ℎ2)| ≤ |Φ(ℎ1)| + |Φ(ℎ2)| ≤ Λ𝑓 + Λ𝑔. (2.12)

Hence Λ(𝑓 + 𝑔) ≤ Λ𝑓 + Λ𝑔, and we have proved (10).
If 𝑓 is now a real function, 𝑓 ∈ 𝐶𝑐(𝑋), then 2𝑓+ = |𝑓| + 𝑓 , so that 𝑓+ ∈ 𝐶+

𝑐 (𝑋); likewise,
𝑓− ∈ 𝐶+

𝑐 (𝑋); and since 𝑓 = 𝑓+ − 𝑓−, it is natural to define

Λ𝑓 = Λ𝑓+ − Λ𝑓− (𝑓 ∈ 𝐶𝑐(𝑋), 𝑓 real) (13)

and
Λ(𝑢 + 𝑖𝑣) = Λ𝑢 + 𝑖Λ𝑣. (14)

Simple algebraic manipulations, just like those which occur in the proof of Theorem 1.32,
show now that our extended functional Λ is linear on 𝐶𝑐(𝑋).
Theorem 9 (Rudin 6.19). If 𝑋 is a locally compact Hausdorff space, then every bounded linear
functional Φ on 𝐶0(𝑋) is represented by a regular complex Borel measure 𝜇, in the sense that

Φ𝑓 = ∫
𝑋

𝑓 𝑑𝜇 (1)

for every 𝑓 ∈ 𝐶0(𝑋).
Proof. Once we have the Λ from Lemma 8, we associate with it a positive Borel measure 𝜆, as
in Theorem 2.14. The conclusion of Theorem 2.14 shows that 𝜆 is regular if 𝜆(𝑋) < ∞. Since

𝜆(𝑋) = sup{Λ𝑓 ∶ 0 ≤ 𝑓 ≤ 1, 𝑓 ∈ 𝐶𝑐(𝑋)} (2.13)

and since |Λ𝑓| ≤ 1 if ‖𝑓‖ ≤ 1, we see that actually 𝜆(𝑋) ≤ 1.
We also deduce from (4) that

|Φ(𝑓)| ≤ Λ(|𝑓|) = ∫
𝑋

|𝑓| 𝑑𝜆 = ‖𝑓‖1 (𝑓 ∈ 𝐶𝑐(𝑋)). (5)

The last norm refers to the space 𝐿1(𝜆). Thus Φ is a linear functional on 𝐶𝑐(𝑋) of norm at
most 1, with respect to the 𝐿1(𝜆)-norm on 𝐶𝑐(𝑋). There is a norm-preserving extension of Φ to
a linear functional on 𝐿1(𝜆), and therefore Theorem 6 (the case 𝑝 = 1) gives a Borel function 𝑔,
with |𝑔| ≤ 1, such that

Φ(𝑓) = ∫
𝑋

𝑓𝑔 𝑑𝜆 (𝑓 ∈ 𝐶𝑐(𝑋)). (6)

Each side of (6) is a continuous functional on 𝐶0(𝑋), and 𝐶𝑐(𝑋) is dense in 𝐶0(𝑋). Hence
(6) holds for all 𝑓 ∈ 𝐶0(𝑋), and we obtain the representation (1) with 𝑑𝜇 = 𝑔 𝑑𝜆.
Lemma 10 (Rudin 6.19). Moreover, the norm of Φ is the total variation of 𝜇:

‖Φ‖ = |𝜇|(𝑋). (2)

Proof. Since ‖Φ‖ = 1, (6) shows that

∫
𝑋

|𝑔| 𝑑𝜆 ≥ sup{|Φ(𝑓)| ∶ 𝑓 ∈ 𝐶0(𝑋), ‖𝑓‖ ≤ 1} = 1. (7)

We also know that 𝜆(𝑋) ≤ 1 and |𝑔| ≤ 1. These facts are compatible only if 𝜆(𝑋) = 1 and
|𝑔| = 1 a.e. [𝜆]. Thus 𝑑|𝜇| = |𝑔| 𝑑𝜆 = 𝑑𝜆, by Theorem 5, and

|𝜇|(𝑋) = 𝜆(𝑋) = 1 = ‖Φ‖, (8)

which proves (2).
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Theorem 11. Placeholder to combine the three results which make up The Reisz Theorem.

Proof.
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Chapter 3

Orthogonal projections

• Destination: Mathlib.Analysis.InnerProductSpace.Projection

• Principal reference: Chapter 12 of [Walter Rudin, Functional Analysis.][Rud87].

Let 𝐻 be a complex Hilbert space and 𝐾 be a closed subspace of 𝐻. We denote 𝐾⟂ the
orthogonal complement of 𝐾 in 𝐻. Any vector 𝑥 ∈ 𝐻 can be written as 𝑥 = 𝑥𝐾 + 𝑥𝐾⟂ , where
𝑥𝐾 ∈ 𝐾, 𝑥𝐾⟂ ∈ 𝐾⟂. The map 𝑝(𝐾) ∶ 𝑥 → 𝑥𝐾 is called the orthogonal projection to 𝐾.

Lemma 12. It holds that 𝑝(𝐾) = 𝑝(𝐾)2 = 𝑝(𝐾)∗.

Proof. The first equality follows by the uniqueness of the orthogonal decomposition.
The second equality follows because ⟨𝑦, 𝑝(𝐾)𝑥⟩ = ⟨𝑦, 𝑥𝐾⟩ = ⟨𝑦𝐾, 𝑥⟩ = ⟨𝑝(𝐾)𝑦, 𝑥⟩ by orthog-

onality.

Lemma 13. For 𝑝 ∈ ℬ(𝐻) such that 𝑝 = 𝑝2 = 𝑝∗, there is a closed subspace 𝐾 such that
𝑝 = 𝑝(𝐾).
Proof. By 𝑝 = 𝑝2, it is a projection. Let 𝐾 be the image of 𝑝. Note that 𝑥 = (𝑝 + (1 − 𝑝))𝑥 =
𝑝𝑥 + (1 − 𝑝)𝑥 for any 𝑥 ∈ 𝐻 and ⟨𝑝𝑥, (1 − 𝑝)𝑥⟩ = ⟨𝑥, (𝑝 − 𝑝)𝑥⟩ = 0. So this gives the orthogonal
decomposition.

Lemma 14 (Rudin 12.6, part 1). Let {𝑥𝑛} be a sequence of pairwise orthogonal vectors in 𝐻.
Then the following are equivalent.

• ∑∞
𝑛=1 𝑥𝑛 converges in the norm topology of 𝐻.

• ∑∞
𝑛=1 ‖𝑥𝑛‖2 < ∞.

Proof. Note that, by orthogonality, ‖ ∑𝑛
𝑗=𝑚 𝑥𝑗‖2 = ∑𝑛

𝑗=𝑚 ‖𝑥𝑗‖2. Therefore, the second condition
implies that the sequence ∑𝑛

𝑗=1 𝑥𝑗 is Cauchy.
Conversely, as ∑𝑛

𝑗=1 𝑥𝑗 converges in norm, the square of its norm ∑𝑛
𝑗=1 ‖𝑥𝑗‖2 converges.

Lemma 15 (Rudin 12.6, part 2). Let {𝑥𝑛} be a sequence of pairwise orthogonal vectors in 𝐻.
Then the following are equivalent.

• ∑∞
𝑛=1 𝑥𝑛 converges in the norm topology of 𝐻.

• ∑∞
𝑛=1⟨𝑥, 𝑦⟩ converges for all 𝑦 ∈ 𝐻.
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Proof. The first condition implies the second by Cauchy-Schwartz.
Assume that ∑∞

𝑛=1⟨𝑥, 𝑦⟩ converges for all 𝑦 ∈ 𝐻. Define Λ𝑛𝑦 = ∑𝑛
𝑗=1⟨𝑦, 𝑥𝑗⟩. As this converges

for each 𝑦, by Banach-Steinhaus, {‖Λ𝑛‖} is bounded. As ‖Λ𝑛‖ = √∑𝑛
𝑗=1 ‖𝑥𝑗‖, this gives the first

condition.
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Chapter 4

Resolutions of the identity

• Destination: ?

• Principal reference: Chapter 12 of [Walter Rudin, Functional Analysis.][Rud87].

Definition 16 (Rudin 12.17). Let 𝔐 be a 𝜎-algebra in a set Ω, and let 𝐻 be a Hilbert space. For
simplicity, we assume that Ω is a locally compact (Hausdorff) space. In this setting, a resolution
of the identity (on 𝔐) is a mapping

𝐸 ∶ 𝔐 → 𝔐(𝐻)
with the following properties:

1. 𝐸(∅) = 0, 𝐸(Ω) = 𝐼 .
2. Each 𝐸(𝜔) is a self-adjoint projection.

3. 𝐸(𝜔′ ∩ 𝜔″) = 𝐸(𝜔′)𝐸(𝜔″).
4. If 𝜔′ ∩ 𝜔″ = ∅, then 𝐸(𝜔′ ∪ 𝜔″) = 𝐸(𝜔′) + 𝐸(𝜔″).
5. For every 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐻, the set function 𝐸𝑥,𝑦 defined by:

𝐸𝑥,𝑦(𝜔) = (𝐸(𝜔)𝑥, 𝑦)

is a complex regular Borel measure on ℳ.

Lemma 17. For any 𝑥 ∈ 𝐻,

𝐸𝑥,𝑥(𝜔) = (𝐸(𝜔)𝑥, 𝑥) = ‖𝐸(𝜔)𝑥‖2.

Proof.

Lemma 18. For any 𝑥 ∈ 𝐻, 𝐸𝑥,𝑥 is a positive measure on 𝔐 whose total variation is:

‖𝐸𝑥,𝑥‖ = 𝐸𝑥,𝑥(Ω) = ‖𝑥‖2.

Proof.
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Lemma 19. For two 𝜔1, 𝜔2, 𝐸(𝜔1), 𝐸(𝜔2) commute.

Proof. By (3), any two of the projections 𝐸(𝜔) commute with each other.

Lemma 20. If 𝜔′ ∩ 𝜔″ = ∅, then the ranges of 𝐸(𝜔′) and 𝐸(𝜔″) are orthogonal to each other

Proof. By (1), (3) and Theorem 12.14.

Lemma 21. If {𝜔𝑗} is a finite family of mutually disjoint Borel sets, then 𝐸(⋃𝑗 𝜔𝑗) = ∑𝑗 𝐸(𝜔𝑗).

Proof. By (4) and induction.

Remark: ∑∞
𝑛=1 𝐸(𝜔𝑛) does not converge in the norm topology of ℬ(𝐻).

Lemma 22. Let 𝑥 ∈ 𝐻 and {𝜔𝑗} be a countable family of mutually disjoint Borel sets. Then
𝐸(⋃𝑗 𝜔𝑗)𝑥 = ∑𝑗 𝐸(𝜔𝑗)𝑥, where the right-hand side converges in the norm topology of 𝐻.

Proof. Since 𝐸(𝜔𝑛)𝐸(𝜔𝑚) = 0 when 𝑛 ≠ 𝑚, the vectors 𝐸(𝜔𝑛)𝑥 and 𝐸(𝜔𝑚)𝑥 are orthogonal to
each other (Theorem 12.14). By (5),

∞
∑
𝑛=1

(𝐸(𝜔𝑛)𝑥, 𝑦) = (𝐸(𝜔)𝑥, 𝑦) (4.1)

for every 𝑦 ∈ 𝐻. It now follows from Theorem 14 that:
∞

∑
𝑛=1

𝐸(𝜔𝑛)𝑥 = 𝐸(𝜔)𝑥.

The series ((4.1)) converges in the norm topology of 𝐻.

Proposition 23 (Rudin 12.18). If 𝐸 is a resolution of the identity, and if 𝑥 ∈ 𝐻, then

𝜔 ↦ 𝐸(𝜔)𝑥

is a countably additive 𝐻-valued measure on* 𝔐.

Proof. This is the summary of what is proved above.

Moreover, sets of measure zero can be handled in the usual way:

Proposition 24 (Rudin 12.19). Suppose 𝐸 is a resolution of the identity. If 𝜔𝑛 ∈ 𝔐 and
𝐸(𝜔𝑛) = 0 for 𝑛 = 1, 2, 3, …, and if

𝜔 =
∞
⋃
𝑛=1

𝜔𝑛,

then 𝐸(𝜔) = 0.
Proof. Since 𝐸(𝜔𝑛) = 0, 𝐸𝑥,𝑥(𝜔𝑛) = 0 for every 𝑥 ∈ 𝐻. Since 𝐸𝑥,𝑥 is countably additive, it
follows that 𝐸𝑥,𝑥(𝜔) = 0. But

‖𝐸(𝜔)𝑥‖2 = 𝐸𝑥,𝑥(𝜔).
Hence, 𝐸(𝜔) = 0.
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Chapter 5

The Spectral Theorem

Functional Analysis by Walter Rudin 1991, extract from Chapter 12

It should perhaps be stated explicitly that the spectrum 𝜎(𝑇 ) of an operator 𝑇 ∈ ℬ(𝐻)
will always refer to the full algebra ℬ(𝐻). In other words, 𝜆 ∈ 𝜎(𝑇 ) if and only if 𝑇 − 𝜆𝐼 has
no inverse in ℬ(𝐻). Sometimes we shall also be concerned with closed subalgebras 𝐴 of ℬ(𝐻)
which have the additional property that 𝐼 ∈ 𝐴 and 𝑇 ∗ ∈ 𝐴 whenever 𝑇 ∈ 𝐴. (Such algebras are
sometimes called ∗-algebras.)

Let 𝐴 be such an algebra, and suppose that 𝑇 ∈ 𝐴 and 𝑇 −1 ∈ ℬ(𝐻). Since 𝑇 𝑇 ∗ is self-
adjoint, 𝜎(𝑇 𝑇 ∗) is a compact subset of the real line (Theorem 12.15), hence does not separate
ℂ, and therefore 𝜎𝐴(𝑇 𝑇 ∗) = 𝜎(𝑇 𝑇 ∗), by the corollary to Theorem 10.18. Since 𝑇 𝑇 ∗ is invertible
in ℬ(𝐻), this equality shows that (𝑇 𝑇 ∗)−1 ∈ 𝐴, and therefore 𝑇 −1 = 𝑇 (𝑇 𝑇 ∗)−1 is also in 𝐴.

Thus 𝑇 has the same spectrum relative to all closed *-algebras in ℬ(𝐻) that contain 𝑇 .
Theorem 12.23 will be obtained as a special case of the following result, which deals with

normal algebras of operators rather than with individual ones.

Theorem 25 (12.22). If 𝐴 is a closed normal subalgebra of ℬ(𝐻) which contains the identity
operator 𝐼 and if Δ is the maximal ideal space of 𝐴, then the following assertions are true:

1. There exists a unique resolution 𝐸 of the identity on the Borel subsets of Δ which satisfies

𝑇 = ∫
Δ

𝑇 𝑑𝐸 (5.1)

for every 𝑇 ∈ 𝐴, where 𝑇 is the Gelfand transform of 𝑇 .

2. The inverse of the Gelfand transform (i.e., the map that takes 𝑇 back to 𝑇 ) extends to
an isometric *-isomorphism of the algebra 𝐿∞(𝐸) onto a closed subalgebra 𝐵 of ℬ(𝐻),
𝐵 ⊃ 𝐴, given by

Φ𝑓 = ∫
Δ

𝑓 𝑑𝐸 (𝑓 ∈ 𝐿∞(𝐸)). (5.2)

Explicitly, Φ is linear and multiplicative and satisfies

Φ( ̄𝑓) = (Φ𝑓)∗, ‖Φ𝑓‖ = ‖𝑓‖∞ (𝑓 ∈ 𝐿∞(𝐸)).

3. 𝐵 is the closure [in the norm topology of ℬ(𝐻)] of the set of all finite linear combinations
of the projections 𝐸(𝜔).
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4. If 𝜔 ⊂ Δ is open and nonempty, then 𝐸(𝜔) ≠ 0.
5. An operator 𝑆 ∈ ℬ(𝐻) commutes with every 𝑇 ∈ 𝐴 if and only if 𝑆 com mutes with every

projection 𝐸(𝜔).

Proof. Recall that (5.1) is an abbreviation for

(𝑇 𝑥, 𝑦) = ∫
Δ

𝑇 𝑑𝐸𝑥,𝑦 (𝑥, 𝑦 ∈ 𝐻, 𝑇 ∈ 𝐴). (5.3)

Since ℬ(𝐻) is a 𝐵∗-algebra (Section 12.9), our given algebra 𝐴 is a commutative 𝐵∗-algebra.
The Gelfand-Naimark theorem 11.18 asserts therefore that 𝑇 → 𝑇 is an isometric *-isomorphism
of 𝐴 onto 𝐶(Δ).

This leads to an easy proof of the uniqueness of 𝐸. Suppose 𝐸 satisfies (5.3). Since 𝑇 ranges
over all of 𝐶(Δ), the assumed regularity of the complex Borel measures 𝐸𝑥,𝑦 shows that each
𝐸𝑥,𝑦 is uniquely determined by (5.3); this follows from the uniqueness assertion that is part of
the Riesz representation theorem ([23], Th. 6.19) 11. Since, by definition, (𝐸(𝜔)𝑥, 𝑦) = 𝐸𝑥,𝑦(𝜔),
each projection 𝐸(𝜔)) is also uniquely determined by (5.3).

This uniqueness proof motivates the following proof of the existence of 𝐸. If 𝑥 ∈ 𝐻 and
𝑦 ∈ 𝐻, Theorem 11.18 shows that 𝑇 ↦ (𝑇 𝑥, 𝑦) is a bounded linear functional on 𝐶(Δ), of norm
≤ ‖𝑥‖|‖𝑦‖, since ‖𝑇 ‖∞ = ‖𝑇 ‖. The Riesz representation theorem supplies us therefore with unique
regular complex Borel measures 𝜇𝑥,𝑦 on Δ such that

(𝑇 𝑥, 𝑦) = ∫
Δ

𝑇 𝑑𝜇𝑥,𝑦 (𝑥, 𝑦 ∈ 𝐻, 𝑇 ∈ 𝐴). (5.4)

For fixed 𝑇 , the left side of (5.4) is a bounded sesquilinear functional on 𝐻, hence so is the right
side, and it remains so if the continuous function 𝑇 is replaced by an arbitrary bounded Borel
function 𝑓 . To each such 𝑓 corresponds therefore an operator Φ𝑓 ∈ ℬ(𝐻) (see Theorem 12.8)
such that

((Φ𝑓)𝑥, 𝑦) = ∫
Δ

𝑓 𝑑𝜇𝑥,𝑦 (𝑥, 𝑦 ∈ 𝐻). (5.5)

Comparison of (5.4) and (5.5) shows that Φ ̂𝑇 = 𝑇 . Thus Φ is an extension of the inverse of
the Gelfand transform.

It is clear that Φ is linear.
Part of the Gelfand-Naimark theorem states that 𝑇 is self-adjoint if and only if ̂𝑇 is real-

valued. For such 𝑇 ,

∫
Δ

𝑇 𝑑𝜇𝑥,𝑦 = (𝑇 𝑥, 𝑦) = (𝑥, 𝑇 𝑦) = (𝑇 𝑦, 𝑥) = ∫
Δ

̂𝑇 𝑑𝜇𝑦,𝑥,

and this implies that 𝜇𝑦,𝑥 = 𝜇𝑥,𝑦. Hence,

((Φ𝑓)𝑥, 𝑦) = ∫
Δ

̄𝑓 𝑑𝜇𝑥,𝑦 = ∫
Δ

𝑓 𝑑𝜇𝑦,𝑥 = ((Φ𝑓)𝑦, 𝑥) = (𝑥, (Φ𝑓)𝑦)

for all 𝑥, 𝑦 ∈ 𝐻, so that

Φ ̄𝑓 = (Φ𝑓)∗. (5.6)
Our next objective is the equality
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Φ(𝑓𝑔) = (Φ𝑓)(Φ𝑔) (5.7)

for bounded Borel functions 𝑓, 𝑔 on Δ. If 𝑆 ∈ 𝐴 and 𝑇 ∈ 𝐴, then (𝑆𝑇 )∧ = 𝑆𝑇 ; hence

∫
Δ

̂𝑆 ̂𝑇 𝑑𝜇𝑥,𝑦 = (𝑆𝑇 𝑥, 𝑦) = ∫
Δ

𝑆 𝑑𝜇𝑇 𝑥,𝑦.

This holds for every 𝑆 ∈ 𝐶(Δ); hence the two integrals are equal if 𝑆 is replaced by any
bounded Borel function 𝑓 . Thus

∫
Δ

𝑓𝑇 𝑑𝜇𝑥,𝑦 = ∫
Δ

𝑓 𝑑𝜇𝑇 𝑥,𝑦 = ((Φ𝑓)𝑇 𝑥, 𝑦) = (𝑇 𝑥, 𝑧) = ∫
Δ

̂𝑇 𝑑𝜇𝑥,𝑧,

where we put 𝑧 = (Φ𝑓)∗𝑦. Again, the first and last integrals remain equal if 𝑇 is replaced by
𝑔. This gives

(Φ(𝑓𝑔)𝑥, 𝑦) = ∫
Δ

𝑓𝑔 𝑑𝜇𝑥,𝑦 = ∫
Δ

𝑔 𝑑𝜇𝑥,𝑧

= ((Φ𝑔)𝑥, 𝑧) = ((Φ𝑔)𝑥, (Φ𝑓)∗𝑦) = (Φ(𝑓)Φ(𝑔)𝑥, 𝑦),
and (5.7) is proved.
We are finally ready to define 𝐸: If 𝜔 is a Borel subset of Δ, let 𝜒𝜔 be its characteristic

function, and put

𝐸(𝜔) = Φ(𝜒𝜔).
By (5.7), 𝐸(𝜔 ∩ 𝜔′) = 𝐸(𝜔)𝐸(𝜔′). With 𝜔′ = 𝜔, this shows that each 𝐸(𝜔) is a projection.

Since Φ𝑓 is self-adjoint when 𝑓 is real, by (5.6), each 𝐸(𝜔) is self-adjoint. It is clear that
𝐸(∅) = Φ(0) = 0. That 𝐸(Δ) = 𝐼 follows from (5.4) and (5.5). The finite additivity of 𝐸 is a
consequence of (5.5), and, for all 𝑥, 𝑦 ∈ 𝐻,

𝐸𝑥,𝑦(𝜔) = (𝐸(𝜔)𝑥, 𝑦) = ∫
Δ

𝜒𝜔 𝑑𝜇𝑥,𝑦 = 𝜇𝑥,𝑦(𝜔).

Thus (5.5) becomes (5.2). That ‖Φ𝑓‖ = ‖𝑓‖∞ follows now from Theorem 12.21.
This completes the proof of (1) and (2).
Part (3) is now clear because every 𝑓 ∈ 𝐿∞(𝐸) is a uniform limit of simple functions (i.e., of

functions with only finitely many values).
Suppose next that 𝜔 is open and 𝐸(𝜔) = 0. If 𝑇 ∈ 𝐴 and 𝑇 has its support in 𝜔, (5.1) implies

that 𝑇 = 0; hence 𝑇 = 0. Since 𝐴 = 𝐶(Δ), Urysohn’s lemma implies now that 𝜔 = ∅. This
proves (4).

To prove (5), choose 𝑆 ∈ ℬ(𝐻), 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐻, and put 𝑧 = 𝑆∗𝑦. For any 𝑇 ∈ 𝐴 and any
Borel set 𝜔 ⊂ Δ we then have

(𝑆𝑇 𝑥, 𝑦) = (𝑇 𝑥, 𝑧) = ∫
Δ

𝑇 𝑑𝐸𝑥,𝑧, (5.8)

(𝑇 𝑆𝑥, 𝑦) = ∫
Δ

̂𝑇 𝑑𝐸𝑆𝑥,𝑦, (5.9)

(𝑆𝐸(𝜔)𝑥, 𝑦) = (𝐸(𝜔)𝑥, 𝑧) = 𝐸𝑥,𝑧(𝜔),
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(𝐸(𝜔)𝑆𝑥, 𝑦) = 𝐸𝑆𝑥,𝑦(𝜔).
If 𝑆𝑇 = 𝑇 𝑆 for every 𝑇 ∈ 𝐴, the measures in (5.8) and (5.9) are equal, so that 𝑆𝐸(𝜔) =

𝐸(𝜔)𝑆. The same argument establishes the converse.
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