Pointwise operations of finsets in a group with zero #
This file proves properties of pointwise operations of finsets in a group with zero.
theorem
Finset.card_le_card_mul_left₀
{α : Type u_1}
[Mul α]
[Zero α]
[DecidableEq α]
{s t : Finset α}
{a : α}
[IsLeftCancelMulZero α]
(has : a ∈ s)
(ha : a ≠ 0)
:
theorem
Finset.card_le_card_mul_right₀
{α : Type u_1}
[Mul α]
[Zero α]
[DecidableEq α]
{s t : Finset α}
{a : α}
[IsRightCancelMulZero α]
(hat : a ∈ t)
(ha : a ≠ 0)
:
theorem
Finset.card_le_card_mul_self₀
{α : Type u_1}
[Mul α]
[Zero α]
[DecidableEq α]
{s : Finset α}
[IsLeftCancelMulZero α]
:
Note that Finset
is not a MulZeroClass
because 0 * ∅ ≠ 0
.
theorem
Finset.Nonempty.mul_zero
{α : Type u_1}
[DecidableEq α]
[MulZeroClass α]
{s : Finset α}
(hs : s.Nonempty)
:
theorem
Finset.Nonempty.zero_mul
{α : Type u_1}
[DecidableEq α]
[MulZeroClass α]
{s : Finset α}
(hs : s.Nonempty)
:
theorem
Finset.Nonempty.div_zero
{α : Type u_1}
[GroupWithZero α]
[DecidableEq α]
{s : Finset α}
(hs : s.Nonempty)
:
theorem
Finset.Nonempty.zero_div
{α : Type u_1}
[GroupWithZero α]
[DecidableEq α]
{s : Finset α}
(hs : s.Nonempty)
: