Documentation

Mathlib.Algebra.GroupWithZero.Pointwise.Finset

Pointwise operations of finsets in a group with zero #

This file proves properties of pointwise operations of finsets in a group with zero.

theorem Finset.card_le_card_mul_left₀ {α : Type u_1} [Mul α] [Zero α] [DecidableEq α] {s t : Finset α} {a : α} [IsLeftCancelMulZero α] (has : a s) (ha : a 0) :
t.card (s * t).card
theorem Finset.card_le_card_mul_right₀ {α : Type u_1} [Mul α] [Zero α] [DecidableEq α] {s t : Finset α} {a : α} [IsRightCancelMulZero α] (hat : a t) (ha : a 0) :
s.card (s * t).card
theorem Finset.card_le_card_mul_self₀ {α : Type u_1} [Mul α] [Zero α] [DecidableEq α] {s : Finset α} [IsLeftCancelMulZero α] :
s.card (s * s).card

Note that Finset is not a MulZeroClass because 0 * ∅ ≠ 0.

theorem Finset.mul_zero_subset {α : Type u_1} [DecidableEq α] [MulZeroClass α] (s : Finset α) :
s * 0 0
theorem Finset.zero_mul_subset {α : Type u_1} [DecidableEq α] [MulZeroClass α] (s : Finset α) :
0 * s 0
theorem Finset.Nonempty.mul_zero {α : Type u_1} [DecidableEq α] [MulZeroClass α] {s : Finset α} (hs : s.Nonempty) :
s * 0 = 0
theorem Finset.Nonempty.zero_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] {s : Finset α} (hs : s.Nonempty) :
0 * s = 0
theorem Finset.div_zero_subset {α : Type u_1} [GroupWithZero α] [DecidableEq α] (s : Finset α) :
s / 0 0
theorem Finset.zero_div_subset {α : Type u_1} [GroupWithZero α] [DecidableEq α] (s : Finset α) :
0 / s 0
theorem Finset.Nonempty.div_zero {α : Type u_1} [GroupWithZero α] [DecidableEq α] {s : Finset α} (hs : s.Nonempty) :
s / 0 = 0
theorem Finset.Nonempty.zero_div {α : Type u_1} [GroupWithZero α] [DecidableEq α] {s : Finset α} (hs : s.Nonempty) :
0 / s = 0
@[simp]
theorem Finset.inv_zero {α : Type u_1} [GroupWithZero α] [DecidableEq α] :
0⁻¹ = 0